References

Cotton, F. A., Morehouse, S. M. \& Wood, J. S. (1964). Inorg. Chem. 3, 1603-1608.
Cruywagen, J. J., Heyns, J. \& Van de Water, R. F. (1986). J. Chem. Soc. Dalton Trans. pp. 1857-1862.
Kitagawa, S., Okubo, T., Kawata, S., Kondo, M., Katada, M. \& Kobayayaski, H. (1995). Inorg. Chem. 34, 4790-4796.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Oshio, H. \& Nagashima, U. (1992). Inorg. Chem. 31, 3295-3301.
Salta, J., O’Connor, C. J., Li, S. \& Zubieta, J. (1996). Inorg. Chim. Acta, 250, 303-310.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1990). SHELXTL-Plus. Structure Determination Sofiware Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). P4. Program for Data Collection. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XSCANS. X-ray Single Crystal Analysis System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 523-531

> Coordination complexes of triphenyltin coumarin-3-carboxylate with O-donor ligands: (coumarin-3-carboxylato)triphenyltin- $L(L=$ ethanol, diphenylcyclopropenone and quinoline N-oxide) and bis[(coumarin3-carboxylato)triphenyltin]- $L(L=$ triphenylphosphine oxide and triphenylarsine oxide)

Seik Weng Ng
Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: hlnswen@cc.um.edu.my

(Received 29 July 1998; accepted 13 November 1998)

Abstract

The Sn atoms in (coumarin-3-carboxylato- O^{3})(ethanolO) triphenyltin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\right.$], (cou-marin-3-carboxylato- O^{3})(1,2-diphenylcyclopropenoneO)triphenyltin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}\right)\right]$, and (coumarin-3-carboxylato- O^{3}) triphenyl (quinoline N -oxide- O)tin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}\right)\right.$, are fivecoordinated with trans $-\mathrm{C}_{3} \mathrm{SnO}_{2}$ trigonal-bipyramidal geometries. In the ethanol adduct, a hydrogen bond links adjacent molecules into a helical chain along the b axis. The molecular 1,2-diphenylcyclopropen-

one and quinoline N-oxide adducts were synthesized by condensing triphenyltin hydroxide with coumarin-3-carboxylic acid in ethanol in the presence of an equimolar quantity of the O-donor ligand. With triphenylphosphine oxide as the Lewis base, the condensation yields μ-(coumarin-3-carboxylato) $-1 \kappa O^{3}: 2 \kappa O^{3^{\prime}}$ -(coumarin-3-carboxylato)- $1 \kappa O^{3}$-hexaphenyl- $1 \kappa^{3} \mathrm{C}, 2 \kappa^{3} \mathrm{C}$ (triphenylphosphine oxide) $-2 \kappa O$-ditin, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left\{\mathrm{PO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$; this dinuclear complex consists of a dimeric carboxylate-bridged bis[(coumarin3 -carboxylato)triphenyltin] entity that is coordinated by the phosphine oxide. μ-(Coumarin-3-carboxylato) $-1 \kappa O^{3}: 2 \kappa O^{3^{\prime}}$-(coumarin-3-carboxylato)-1 κO^{3}-hexa-phenyl- $1 \kappa^{3} C, 2 \kappa^{3} C$-(triphenylarsine oxide) $-2 \kappa O$-ditin, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left\{\mathrm{AsO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$, is isomorphous with the phosphine oxide. The carboxylate bridge is longer than the dative $\mathrm{Sn}-\mathrm{O}_{L}$ bond in both dinuclear compounds.

Comment

Unlike triorganotin halides and pseudohalides that yield a plethora of $1 / 1$ adducts with 'pointed' (Ng et al., 1982) O-donor ligands, triorganotin carboxylates rarely furnish such molecular complexes because the carboxylates are themselves either only weak Lewis acids (as with triphenyltin arylcarboxylates) or are already saturated with respect to coordination through carboxylate bridging (as with triphenyltin alkanoates) (Ng et al., 1988). Complexes of triphenyltin carboxylates with water (Kumar Das et al., 1977; Ng, 1996; Ng \& Kumar Das, 1995a; Ng et al., 1996) and methanol (Alcock \& Roe, 1989) have been isolated, albeit serendipitously; these adducts are held together in the crystal structure by hydrogen bonds involving the solvate molecules. [$\operatorname{Bis}(N, N$-dimethylthiocarbamoylthio)acetato]triphenyltin is an unusual example of a triorganotin carboxylate showing Lewis acidity; the compound forms $1 / 1$ complexes with hexamethylphosphoramide, triphenylphosphine oxide ($\mathrm{Ng}, 1995 b$) and quinoline N oxide ($\mathrm{Ng}, 1997$). The Lewis acidity of this carboxylate can be attributed to the electron-withdrawing capacity of the dimethylthiocarbamoylthiolyl units in the anionic group; in fact, the compound is so Lewis acidic that even ethanol can coordinate to it ($\mathrm{Ng} \&$ Kumar Das, 1991). On the other hand, bis(triphenyltin) succinate, which yields isolable adducts with several O-donor ligands ($\mathrm{Ng}, 1998 a$), represents an anomaly, as the succinato group is not normally considered a strongly basic entity.

Although the coumarin-3-carboxylate anion does not appear to be able to endow the triphenyltin derivative with enhanced Lewis acidity, triphenyltin coumarin-3carboxylate accepts a coumarin-3-carboxylate anion to form the bis(coumarin-3-carboxylato)triphenylstannate anion, which has been structurally characterized as its tetramethylammonium salt ($\mathrm{Ng} \&$ Kumar Das, 1997b).

[^0]Acta Crystallographica Section C ISSN 0108-2701 © 1999

The geometry of the Sn atom in this salt is similar to that found for the Sn atom in bis(trifluoroacetato)triphenylstannate ($\mathrm{Ng}, 1998 b$; Ng \& Kumar Das, 1997a). The isolation of the former stannate implies that the parent carboxylate must therefore possess Lewis acidity comparable with that of triphenyltin trifluoroacetate, whose acceptor strength can be attributed to the trifluoromethyl unit in the anionic group.

Triphenyltin coumarin-3-carboxylate, when synthesized by condensing triphenyltin hydroxide with coumarin-3-carboxylic acid in toluene, exists as a hydrate. The water molecule in this compound is probably coordinated to the Sn atom; it is expected to form hydrogen bonds to the carbonyl groups of the anion. In the ethanol complex, (I), the coumarin unit is perfectly planar (r.m.s. deviation $0.011 \AA$); the carboxyl group is twisted with respect to this plane by $43.6(8)^{\circ}$ so that its carboxyl O atom can form a short hydrogen bond [2.629(8) \AA] with the ethanol O atom. The dative $\mathrm{Sn}-\mathrm{O}$ bond distance is similar to that [2.394 (8) \AA] found in the ethanol adduct of 2-tri-phenylstannyl-1,2-benzisothiazol-3(2 H)-one 1,1 -dioxide (Ng et al., 1989), as well as that [2.465(4) \AA] found in bis(dicyclohexylammonium) tris(oxalato)tetrakis(tri-butylstannate)-2ethanol (Ng et al., 1990).

(I)

(II)

(III)

(V)

Although 1,2-diphenylcyclopropenone is a stronger Lewis base compared with ethanol arising from the ability of the cyclopropene ring to disperse the positive charge, the $\mathrm{Sn}-\mathrm{O}$ bond distance in the triphenyltin coumarin-3-carboxylate adduct, (II), is nevertheless not much different from that in the ethanol adduct. The $\mathrm{Sn}-\mathrm{O}$ distance is similar to that [$2.540(2) \AA$] found in chlorotriphenyltin-1,2-diphenycyclopropenone (Ng \& Kumar Das, 1993). Replacing the ketone donor by an N-oxide results in an adduct, (III), having a dative $\mathrm{Sn}-$ O bond [2.407 (2) \AA] that is shorter than that in (II) but longer than that in (I). This distance is similar to that $[2.446(4) \AA$ A found in the $[\operatorname{bis}(N, N$-dimethylthiocarbamoylthio) acetato]triphenyltin adduct ($\mathrm{Ng}, 1997$). The $\mathrm{Sn}-\mathrm{O}-E$ angles in (II) [138.0 (5) ${ }^{\circ}$] and (III) [121.9(2) ${ }^{\circ}$] imply an $s p^{2}$ type of hybridization at the O atom.
The reaction between stoichiometric amounts of triphenyltin coumarin-3-carboxylate and triphenylphosphine oxide furnishes a dinuclear bis(triphenyltin coumarin-3-carboxylate), (IV), having only one of its monomeric units (molecule b) coordinated by the Lewis base. As this moiety uses its doubly bonded carboxyl O atom to bond to the other monomeric unit (molecule a), the dinuclear adduct represents an example of a triorganotin carboxylate that exhibits both Lewis acidic as well as Lewis basic character in one molecule. A similar feature has also been observed in both the hexanuclear complex [bis(triphenyltin) succinate]-2(quinoline N-oxide) ($\mathrm{Ng} \&$ Kumar Das, 1995b) and bis(triphenyltin 3-oxapentamethylenethio-carbamoyl-S-acetate) hydrate ($\mathrm{Ng}, 1996$); in the latter, the donor ligand is a water molecule that links the dimers into a chain. Coordination by the phosphine

Fig. 1. ORTEPII (Johnson, 1976) plots of compounds (I), (II) and (III) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
oxide to the Sn atom of molecule $b[\mathrm{Sn}-\mathrm{O}$ (phosphine oxide) $=2.369(3) \AA$ and $\left.\mathrm{O}-\mathrm{Sn}-\mathrm{O}=172.8(1)^{\circ}\right]$ weakens the carboxylate bridge that links molecule a $[\mathrm{Sn}-\mathrm{O}($ carboxylate bridge $)=2.514$ (3) \AA and $\mathrm{O}-\mathrm{Sn}-$ $\left.\mathrm{O}=168.1(1)^{\circ}\right]$ to molecule b. The $\mathrm{Sn}-\mathrm{O}-\mathrm{P}$ angle [166.4 (2) \AA], which is the among the largest for the
phosphine oxide complexes of inorganic and organotin halides (Ng, 1995a; Ng \& Kumar Das, 1992, 1996; Rheingold et al., 1984), reflects the crowding of the phosphine oxide when it coordinates to molecule b.

The triphenylarsine analog, (V), is isomorphous. The $\mathrm{Sn}-\mathrm{O}($ arsine oxide $)$ distance $[2.260(3) \AA]$ is shorter

(a)

(b)

Fig. 2. ORTEPII (Johnson, 1976) plots of (a) the (coumarin-3-carboxylato)triphenyltin molecule and (b) the (coumarin-3-carboxylato)triphenyl-tin-triphenylphosphine oxide molecule of (IV) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
than that in the phosphine oxide adduct; however, because the arsenic-oxygen bond [1.647 (3) \AA] is much longer than the phosphorus-oxygen bond [1.492 (3) \AA], there is less crowding at molecule b, so that the Sn -$\mathrm{O}-\mathrm{As}$ skeleton is more bent $\left[\mathrm{Sn}-\mathrm{O}-\mathrm{As}=159.4(2)^{\circ}\right.$].

Experimental

Equimolar amounts of triphenyltin hydroxide and coumarin-3-carboxylic acid were heated in a small volume of 95%
ethanol. The filtered solution when cooled afforded crystals of the ethanol adduct (I) [m.p. 417-4I8 K (decomposition)]. Analysis found: C $61.30, \mathrm{H} 4.16 \%$; calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Sn}: \mathrm{C} 61.57, \mathrm{H} 4.48 \%$; $\mathrm{Sn}^{119 m}$ Mössbauer (80 K): isomer shift (IS) $=1.25$, quadrupole splitting $(\mathrm{QS})=3.20$, $\tau_{1}=1.13, \tau_{2}=1.10 \mathrm{~mm} \mathrm{~s}^{-1}$; IR (Nujol): $-\mathrm{CO}_{2} 1738,1635$, $1605,1568 \mathrm{~cm}^{-1}$ (cf. $1741 \mathrm{~cm}^{-1}$ for the carbonyl stretch in coumarin-3-carboxylic acid). An attempt to synthesize the ethanol-free compound by carrying out the reaction in toluene in a Dean-Stark water separator gave instead the hydrated compound, aqua(coumarin-3-carboxylato)triphenyltin, which

Fig. 3. ORTEPII (Johnson, 1976) plots of (a) the (coumarin-3-carboxylato)triphenyltin molecule and (b) the (coumarin-3-carboxylato)triphenyl-tin-triphenylarsine oxide molecule of (V) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
was purified from chloroform to give a white powder that failed to yield crystals. Analysis found: C $60.50, \mathrm{H} 3.60 \%$; calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Sn}$: $\mathrm{C} 60.36, \mathrm{H} 3.98 \%$; $\mathrm{Sn}^{119 m}$ Mössbauer: $\mathrm{IS}=1.27, \mathrm{QS}=3.53, \tau_{1}=1.03, \tau_{2}=1.13 \mathrm{~mm} \mathrm{~s}^{-1}$.

The 1,2-diphenylcyclopropenone adduct, (II), was synthesized by heating equimolar amounts of triphenyltin hydroxide, coumarin-3-carboxylic acid and 1,2-diphenylcyclopropenone in ethanol. Slow cooling of the filtered mixture afforded crystals of (II) (m.p. 412-414 K). Analysis found: C 69.30, H 3.95%; calculated for $\mathrm{C}_{43} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Sn}$: C 69.71, H 5.85\%; $\mathrm{Sn}^{119 m}$ Mössbauer: $\mathrm{IS}=1.23$, $\mathrm{QS}=3.14, \tau_{1}=1.31$, $\tau_{2}=1.28 \mathrm{~mm} \mathrm{~s}^{-1}$; IR: $-\mathrm{CO}_{2} / \mathrm{CO} 1731,16601607,1588$, $1566 \mathrm{~cm}^{-1}$.

Condensation in the presence of an equimolar amount of quinoline N-oxide hydrate gave the analogous amine-oxide complex (III) (m.p. 434-435 K). Analysis found: C 64.60 , H 3.92%; calculated for $\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Sn}: \mathrm{C} 64.94, \mathrm{H} 3.98 \%$; $\mathrm{Sn}^{119 m}$ Mössbauer: $\mathrm{IS}=1.20, \mathrm{QS}=2.95, \tau_{1}=1.10, \tau_{2}=$ $1.07 \mathrm{~mm} \mathrm{~s}^{-1} ;$ IR: $-\mathrm{CO}_{2} 1751,1637,1608,1567 ; \mathrm{N} \rightarrow \mathrm{O}$ $1275 \mathrm{~cm}^{-1}$.

The condensation was performed with an equimolar amount of triphenylphosphine oxide to afford complex (IV) (m.p. 443444 K). Analysis found: C $65.70, \mathrm{H} 4.08 \%$; calculated for $\mathrm{C}_{74} \mathrm{H}_{55} \mathrm{O}_{9} \mathrm{PSn}_{2}$: C $65.52 ; \mathrm{H} 4.09 \%$; $\mathrm{Sn}^{119 m}$ Mössbauer: IS $=$ 1.24, $\mathrm{QS}=3.25, \tau_{1}=1.06, \tau_{2}=1.05 \mathrm{~mm} \mathrm{~s}^{-1}$; IR: $-\mathrm{CO}_{2}$ $1752,1646,1582 ; \mathrm{P} \rightarrow \mathrm{O} 1272 \mathrm{~cm}^{-1}$.

The analogous reaction with an equimolar amount of triphenylarsine oxide produced complex (V) (m.p. 443-446 K) Analysis found: $\mathrm{C} 63.50, \mathrm{H} 3.91 \%$; calculated for $\mathrm{C}_{74} \mathrm{H}_{55}$ $\mathrm{AsO}_{9} \mathrm{Sn}_{2}$: C 63.46, H $3.96 \% ; \mathrm{Sn}^{119 m}$ Mössbauer: $\mathrm{IS}=1.20$, $\mathrm{QS}=3.14, \tau_{1}=1.14, \tau_{2}=1.12 \mathrm{~mm} \mathrm{~s}^{-1}$; IR: $-\mathrm{CO}_{2} 1743$, 1608, 1569; As $\rightarrow 0877 \mathrm{~cm}^{-1}$.

Compound (I)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\right.$ -
$\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$]
$M_{r}=585.20$
Monoclinic
$P 2_{1} / c$
$a=9.115(2) \AA$
$b=14.226(2) \AA$
$c=20.224(4) \AA$
$\beta=93.532(9)^{\circ}$
$V=2617.6(8) \AA^{3}$
$Z=4$
$D_{x}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.852, T_{\text {max }}=0.897$
3651 measured reflections
3398 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.0-10.0^{\circ}$
$\mu=1.014 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate
$0.22 \times 0.22 \times 0.11 \mathrm{~mm}$ Colorless

2244 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=22.44^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 15$
$l=-21 \rightarrow 21$
3 standard reflections frequency: 60 min intensity decay: 4%

Refinement

Refinement on F^{2}
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0500 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.118$
$S=0.992$
3398 reflections
289 parameters
H atoms riding; $U(\mathrm{H})=$ $1.5 U_{\mathrm{cq}}(\mathrm{C}, \mathrm{O})$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.395 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.552 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (I)

$\mathrm{Snl}-\mathrm{Cl}$	2.129 (4)	$\mathrm{Sn} 1-\mathrm{Ol}$	2.147 (5)
$\mathrm{Sn} 1-\mathrm{C} 7$	2.135 (4)	$\mathrm{SnI}-\mathrm{O} 5$	2.401 (5)
Snl-Cl3	2.120 (4)		
$\mathrm{Cl}-\mathrm{Snl}-\mathrm{Cl} 3$	114.1 (2)	C7-Snl-OI	87.1 (2)
$\mathrm{Cl}-\mathrm{Snl}-\mathrm{C} 7$	117.5 (2)	$\mathrm{C} 7-\mathrm{Snl}-\mathrm{O5}$	85.9 (2)
$\mathrm{Cl}-\mathrm{SnI}-\mathrm{O} 1$	107.2 (2)	C13-Snl-OI	93.1 (2)
$\mathrm{Cl}-\mathrm{Snl}-\mathrm{O} 5$	86.0 (2)	C13-Snl-O5	81.9 (2)
$\mathrm{C} 7-\mathrm{Snl}-\mathrm{Cl} 3$	125.7 (2)	$\mathrm{O1}-\mathrm{Snl}-\mathrm{O} 5$	166.8 (2)

Compound (II)

Crystal data
$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\right.$ -
$\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}\right)$]
$M_{r}=745.36$
Monoclinic
$P 2_{1} / n$
$a=12.712$ (2) \AA
$b=19.402(2) \AA$
$c=14.456$ (3) \AA
$\beta=97.242$ (9) ${ }^{\circ}$
$V=3536.8(9) \AA^{3}$
$Z=4$
$D_{x}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.720, T_{\text {max }}=0.814$
6519 measured reflections
6224 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.0-10.0^{\circ}$
$\mu=0.767 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.36 \times 0.32 \times 0.28 \mathrm{~mm}$
Colorless

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.126$
$S=0.989$
6224 reflections
382 parameters
H atoms riding; $U(\mathrm{H})=$ $1.5 U_{\mathrm{cq}}(\mathrm{C})$

3496 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 23$
$l=-17 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: 3%

$$
w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0446 P)^{2}\right]
$$

where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.321 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.291 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters $\left(A^{\circ},{ }^{\circ}\right)$ for (II)

$\mathrm{SnI}-\mathrm{Cl}$	2.130 (3)	$\mathrm{Sn} 1-\mathrm{Ol}$	2.107 (4)
$\mathrm{Sn} 1-\mathrm{C} 7$	2.130 (4)	$\mathrm{Sn} 1-\mathrm{O}$	2.425 (4)
$\mathrm{Sn} 1-\mathrm{Cl} 3$	2.135 (4)		
$\mathrm{C} 1-\mathrm{Snl}-\mathrm{C} 7$	120.7 (2)	C7-Snl-O1	101.4 (2)
$\mathrm{C} 1-\mathrm{Snl-C13}$	117.6 (2)	C7-Snl-O5	85.5 (2)
$\mathrm{C} 1-\mathrm{Snl}-\mathrm{Ol}$	96.7 (2)	C13-Snl-O1	87.5 (2)
$\mathrm{C} 1-\mathrm{SnI}-\mathrm{O} 5$	87.3 (2)	$\mathrm{Cl} 3-\mathrm{Snl}-\mathrm{O} 5$	81.3 (2)
$\mathrm{C} 7-\mathrm{SnI}-\mathrm{Cl} 3$	119.2 (2)	$\mathrm{Ol}-\mathrm{Snl}-\mathrm{O} 5$	168.8 (2)

Compound (III)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\right.$ ($\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}$)]
$M_{r}=684.29$
Triclinic
$P \overline{1}$
$a=10.4099(3) \AA$
$b=11.520$ (1) \AA
$c=13.725(2) \AA$
$\alpha=111.754$ (8) ${ }^{\circ}$
$\beta=95.758(7)^{\circ}$
$\gamma=98.695(5)^{\circ}$
$V=1489.0$ (2) \AA^{3}
$Z=2$
$D_{x}=1.526 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.712, T_{\text {max }}=0.779$
5562 measured reflections
5241 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.013$
5241 reflections
361 parameters
H atoms riding; $U(\mathrm{H})=$
$1.5 U_{\mathrm{cq}}(\mathrm{C})$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.0-10.0^{\circ}$
$\mu=0.905 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.29 \times 0.29 \times 0.29 \mathrm{~mm}$
Colorless

> 4564 reflections with
> $I>2 \sigma(I)$
> $R_{\text {int }}=0.018$
> $\theta_{\max }=25.01^{\circ}$
> $h=0 \rightarrow 12$
> $k=-13 \rightarrow 13$
> $l=-16 \rightarrow 16$
> 3 standard reflections frequency: 60 min intensity decay: 10%

Compound (IV)

Crystal data
$\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}-\right.$
$\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)$]
$M_{r}=1356.53$
Triclinic
$P \overline{1}$
$a=9.4696(6) \AA$
$b=16.164$ (2)
(2) \AA
$c=20.816(2) \AA$
$\alpha=79.329(8)^{\circ}$
$\beta=81.946$ (7) ${ }^{\circ}$
$\gamma=80.861(7)^{\circ}$
$V=3071.1$ (5) \AA^{3}
$Z=2$
$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.737, T_{\text {max }}=0.787$
10759 measured reflections
10759 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.102$
$S=1.069$
10759 reflections
667 parameters
H atoms riding; $U(\mathrm{H})=$ $1.5 U_{\mathrm{cq}}(\mathrm{C})$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.0-13.0^{\circ}$
$\mu=0.899 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.36 \times 0.32 \times 0.28 \mathrm{~mm}$
Colorless

8333 reflections with

$$
I>2 \sigma(I)
$$

$\theta_{\text {max }}=24.96^{\circ}$
$h=0 \rightarrow 11$
$k=-18 \rightarrow 19$
$l=-24 \rightarrow 24$
3 standard reflections frequency: 60 min intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0266 P)^{2}\right.$ $+5.4654 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.444 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.384 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 4. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (IV)

Snla-Cla	2.132 (3)	Sn1 b-C13 3	2.141 (3)
Snla-Cl3a	2.130 (3)	Snlb-O1b	2.143 (3)
Snla-C7a	2.135 (3)	Snlb-O5b	2.369 (3)
Snla-Ola	2.118 (3)	P1 $b-\mathrm{C} 29 b$	1.804 (3)
Snla-O2b	2.514 (3)	Pl $b-\mathrm{C} 35 b$	1.789 (3)
$\mathrm{Sn} 1 b-\mathrm{Cl} b$	2.128 (2)	$\mathrm{Pl} b-\mathrm{C} 41 b$	1.792 (3)
Snlb-C7b	2.139 (3)	$\mathrm{Pl} b-\mathrm{O} 5 b$	1.492 (3)
Cla-Snla-C7a	120.2 (1)	$\mathrm{C} 7 b-\mathrm{Sn} 1 b-\mathrm{Cl} 3 b$	117.1 (1)
Cla -Snla-Cl3a	113.5 (1)	$\mathrm{C} 7 b-\mathrm{Sn1} b-\mathrm{O} 1 b$	95.6 (1)
Cla-Snla-Ola	94.9 (1)	$\mathrm{C} 7 b-\mathrm{Sn1} b-\mathrm{O} b$	89.6 (1)
$\mathrm{Cl} a-\mathrm{Sn} 1 a-\mathrm{O} 2 b$	83.7 (1)	$\mathrm{C} 13 b-\mathrm{Snl} 1 b-\mathrm{Ol} b$	85.1 (1)
C7a-Snla-Cl3a	122.8 (2)	$\mathrm{Ol} b-\mathrm{Sn} 1 b-\mathrm{O} b$	172.8 (1)
C7a-Snla-Ola	88.2 (1)	$\mathrm{C} 13 b-\mathrm{Snl} b-\mathrm{O} 5 b$	88.1 (1)
$\mathrm{C} 7 a-\mathrm{Sn} 1 a-\mathrm{O} 2 b$	82.3 (1)	$\mathrm{C} 29 b-\mathrm{Pl} b-\mathrm{C} 41 b$	108.9 (2)
Cl3a-Snla-Ola	105.9 (2)	$\mathrm{C} 29 b-\mathrm{Pl} b-\mathrm{C} 35 b$	103.7 (2)
C13a-Snla-O2b	85.4 (1)	$\mathrm{C} 29 b-\mathrm{Pl} b-\mathrm{O} 5 b$	111.7 (2)
$\mathrm{Ol} a-\mathrm{Snla}-\mathrm{O} 2 b$	168.1 (1)	$\mathrm{C} 35 b-\mathrm{Pl} b-\mathrm{C} 41 b$	107.0 (2)
$\mathrm{Cl} b-\mathrm{Sn} 1 b-\mathrm{C} 7 b$	124.0 (1)	$\mathrm{C} 35 b-\mathrm{Pl} b-\mathrm{O} 5 b$	110.8 (2)
$\mathrm{Cl} b-\mathrm{Snlb}-\mathrm{Cl} 36$	118.5 (1)	$\mathrm{C} 41 b-\mathrm{Pl} b-\mathrm{O} 5 b$	114.1 (2)
$\mathrm{C} 1 b-\mathrm{Sn} 1 b-\mathrm{Ol} b$	95.6 (1)	$\mathrm{Pl} b-\mathrm{O} 5 b-\mathrm{Snl} b$	166.4 (2)
$\mathrm{Cl} b-\mathrm{Snl} b-\mathrm{OSb}$	85.5 (1)		

Compound (V)

Crystal data
$\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}-\right.$
$\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{AsO}\right)$]
$M_{r}=1400.48$
Triclinic
$P \overline{1}$
$a=9.5242$ (4) \AA
$b=16.219$ (2) \AA
$c=20.807(2) \AA$
$\alpha=79.501(9)^{\circ}$
$\beta=81.793(7)^{\circ}$
$\gamma=80.523(6)^{\circ}$
$V=3096.0(5) \AA^{3}$
$Z=2$
$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.545, T_{\text {max }}=0.572$
10851 measured reflections
10851 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.093$
$S=1.085$
10851 reflections
667 parameters
H atoms riding; $U(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.0-13.0^{\circ}$
$\mu=1.396 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.40 \times 0.40 \times 0.40 \mathrm{~mm}$
Colorless

8629 reflections with

$$
I>2 \sigma(I)
$$

$\theta_{\text {max }}=24.96^{\circ}$
$h=0 \rightarrow 11$
$k=-18 \rightarrow 19$
$l=-24 \rightarrow 24$
3 standard reflections frequency: 60 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0327 P)^{2}\right. \\
& \quad+3.7829 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.424 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.357 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 5. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (V)

Snla-Cla	2.132 (2)	Snlb-C13b	2.141 (2)
Snla-C7a	2.136 (2)	$\mathrm{SnIb}-\mathrm{Ol} b$	2.170 (3)
Snla-Cl3a	2.126 (3)	$\mathrm{Sn} 1 \mathrm{~b}-\mathrm{O} 5 b$	2.260 (3)
Snla-Ola	2.123 (3)	Asl b-O5b	1.647 (3)
Snla-O2b	2.479 (3)	Aslb C 290	1.903 (2)
$\mathrm{Sn} 1 b-\mathrm{Cl} b$	2.130 (2)	As $1 b-\mathrm{C} 35 b$	1.889 (3)
Snlb-C7b	2.138 (3)	Asib C4lb	1.893 (3)
$\mathrm{Cla}-\mathrm{Snla-C7a}$	119.8 (1)	C7b-Snlb-C13b	117.9 (1)
Cla-Snla-C13a	113.5 (1)	$\mathrm{C} 7 b-\mathrm{Sn1b-O1} b$	94.4 (1)
Cla-Snla-O1a	94.6 (1)	$\mathrm{C} 7 b-\mathrm{Sn} 1 b-\mathrm{O} 5$	88.7 (1)
$\mathrm{Cl} a-\mathrm{Sn} 1 a-\mathrm{O} 2 b$	84.5 (1)	$\mathrm{Cl} 3 b-\mathrm{SnI} / b-\mathrm{Ol} b$	83.9 (1)
C7a-Snla-Cl3a	123.5 (1)	C13b-Sn1b-O5b	91.3(1)
$\mathrm{C} 7 a-\mathrm{Snla}-\mathrm{Ola}$	88.1 (1)	Olb-Snlb-O5b	175.1 (1)
C7a-Snla-O2b	82.6 (1)	C 29 b - As $1 b-\mathrm{C} 41 b$	109.6 (2)
Cl3a-Sn1a-O2b	85.2 (1)	C 29 b -Aslb-C35b	104.7 (2)
C13a-Snla-O1a	105.4 (1)	C29b-As1b-O5b	111.0)(2)
$\mathrm{Ola}-\mathrm{Snla}-\mathrm{O} 2 b$	168.6 (1)	C35b-Aslb-C41b	106.8 (2)
$\mathrm{Cl} b-\mathrm{Sn} 1 b-\mathrm{C} 7 b$	124.4 (1)	C35b-As1b-O5b	108.7 (2)
$\mathrm{Cl} b-\mathrm{Snlb}-\mathrm{Cl} 36$	117.6 (1)	$\mathrm{C} 41 \mathrm{~b}-\mathrm{As} 1 \mathrm{lb-O} 5 b$	115.4 (2)
$\mathrm{Cl} b-\mathrm{Snl} b-\mathrm{Ol} b$	94.0 (1)	Aslb-O5b-Snl b	159.4 (2)
$\mathrm{Cl} b-\mathrm{Sn} 16-\mathrm{O} 5$	87.3 (1)		

The phenyl rings in the structures were refined as rigid hexagons.

For all compounds, data collection: CAD-4 VAX/PC (EnrafNonius, 1988); cell refinement: CELDIM in CAD-4 VAX/PC; data reduction: MolEN (Fair, 1990) and XCAD-4 (Harms, 1997); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

I thank the National Science Council for R \& D (IRPA 09-02-03-0371) for supporting this work.

Supplementary data for this paper are available from the IUCr
electronic archives (Reference: SK 1234). Services for accessing these
data are described at the back of the journal.

References

Alcock, N. W. \& Roe, S. M. (1989). J. Chem. Soc. Dalton Trans. pp. 1589-1598.
Enraf-Nonius (1988). CAD-4 VAXIPC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating Sistem. Enraf-Nonius. Scientific Instruments Division. PO Box 483, 2600 AL Delft, The Netherlands.
Fair. C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delf. The Netherlands.
Harms, K. (1997). XCAD4. Program for the Lp Correction of Nonius Four-Circle Diffractometer Data. University of Marburg. Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kumar Das, V. G., Chen, W., Ng, S. W. \& Mak, T. C. W. (1977). J. Organomet. Chem. 322, 33-47.
Ng, S. W. (1995a). Acta Cryst. C51, 2563-2565.
Ng. S. W. (1995b). Main Group Met. Chem. 18. 603-610.
Ng. S. W. (1996). Main Group Met. Chem. 19. 113-120.
Ng. S. W. (1997). Acta Cryst. C53. 274-276.
Ng. S. W. (1998a). Acta Crvist. C54, 745-750.
Ng, S. W. (1998b). Main Group Met. Chem. 21, 13-19.
Ng, S. W.. Barnes, C. L., Hossain. M. B., van der Helm, D., Zuckerman, J. J. \& Kumar Das, V. G. (1982). J. Am. Chem. Soc. 104, 5359-5364.
Ng, S. W., Chen, W. \& Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-64.
Ng, S. W., Chen, W., Kumar Das, V. G. \& Mak, T. C. W. (1989). J. Organomet. Chem. 373, 21-27.
Ng, S. W. \& Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.
Ng, S. W. \& Kumar Das, V. G. (1992). Acta Cņst. C48, 1839-1841.
Ng. S. W. \& Kumar Das, V. G. (1993). J. Cristallogr. Spectrosc. Res. 23, 929-932.
Ng, S. W. \& Kumar Das, V. G. (1995a). Main Group Met. Chem. 18. 309-314.
Ng, S. W. \& Kumar Das, V. G. (1995b). Z. Kristallogr. 210. 133-136.
Ng. S. W. \& Kumar Das, V. G. (1996). Acta Cn.st. C52.-1367-1369.
Ng. S. W. \& Kumar Das, V. G. (1997a). Acta Crrst. C53, 212-213.
Ng. S. W. \& Kumar Das, V. G. (1997b). Acta Crist. C53, 1034-1036.
Ng. S. W., Kumar Das. V. G., Hossain, M. B.. Goerlitz. F. \& van der Helm, D. (1990). J. Organomet. Chem. 390. 19-28.
Ng. S. W., Kumar Das, V. G. \& Kennard. C. H. L. (1996). Main Group Met. Chem. 19, 107-111.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cṛ:st. A24, 351-359.
Rheingold, A. L., Ng, S. W. \& Zuckerman, J. J. (1984). Inorg. Chim. Acta, 86. 179-183.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 531-533

Monooxovanadium(V) complexes with bidentate N-phenylbenzohydroxamate

Wei Chen, ${ }^{a}$ Shan Gao ${ }^{b}$ and Shi-Xiong Liu ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{b}$ Department of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China. E-mail: chenwei@kimia.um.edu.my

(Received 2 June 1998; accepted 12 November 1998)

Abstract

Two complexes of oxovanadium(V) with $\mathrm{VO}(\mathrm{ONO})$ -(OO)-type coordination were synthesized and analysed by X-ray diffraction. These compounds are (acetylacetone benzoylhydrazonato- O, N, O^{\prime})(N-hydroxy- N -phenylbenzamido- O, O^{\prime}) oxovanadium $(\mathrm{V}),\left[\mathrm{VO}\left(\mathrm{C}_{12} \mathrm{H}_{12}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)$], and (N-hydroxy- N-phenylbenz-amido- O, O^{\prime})oxo(N-salicylidene-L-alaninato- O, N, O^{\prime})vanadium(V), $\left[\mathrm{VO}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)\right] ; N$-hydroxy- N phenylbenzamide is also known as N-phenylbenzohydroxamic acid. The distorted octahedral coordination at vanadium is similar in both complexes; the equatorial plane is defined by one N and two O atoms of the tridentate hydrazone ligand and the oxime O atom of the hydroxamate ligand, while the axial oxo group is trans to the carbonyl O atom of the hydroxamate ligand.

Comment

The presence of hydroxamic acids at the active sites of some biological enzymes (Kurzak et al., 1992) and the discovery of the biological relevance of hydrox-amato-vanadium complexes (Cornman et al., 1992) have resulted in increased interest in the study of their structural properties. However, only a few structures of the simplest vanadium complexes with hydroxamate ligands have been reported (Cornman et al., 1992; Fisher et al., 1989; Pecoraro, 1989; Gibney et al., 1993; Liu \& Gao, 1998, 1999).

As part of a continuing study of oxovanadiumhydroxamate complexes, we report the syntheses and structures of (acetylacetone benzoylhydrazonato$\left.O, N, O^{\prime}\right) \operatorname{oxo}\left(N\right.$-phenylbenzohydroxamato- O, O^{\prime}) vanadium(V), (1), and oxo(N-phenylbenzohydroxamate$\left.O, O^{\prime}\right)\left(N\right.$-salicylidene-L-alaninato- O, N, O^{\prime}) vanadium (V), (2). The coordination geometry and bond parameters of
(1) and (2) are similar to those in $\left[\mathrm{VO}^{1}(\mathrm{bbz})\right]$ and [$\left.\mathrm{VOL}^{2}(\mathrm{bbz})\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ [where $\mathrm{H}_{2} L^{1}$ is N -salicylideneglycine, $\mathrm{H}_{2} L^{2}$ is N -(2-carboxyphenyl)salicylidenamine and $\mathrm{H}_{2} \mathrm{bbz}$ is N-phenylbenzohydroxamic acid; Liu \& Gao, 1999].

(1)

(2)

In both compounds, the atom trans to the oxo O atom is the carbonyl O atom of the hydroxamate ligand. The trans axial angle is $167.05(8)^{\circ}$ in complex (1), and 171.6 (2) and 173.6 (2) ${ }^{\circ}$ in complex (2). The axial VO bonds (trans to $\mathrm{V}=\mathrm{O}$) are longer than the equatorial V -O bonds due to the structural trans effect. The oxo-vanadium bond lengths range from 1.573 (3) to 1.589 (3) \AA, which are within the range of most $\mathrm{V}-\mathrm{O}$ bond distances.

Compound (2) crystallizes in the polar space group $P 2_{1}$ with two molecules in the asymmetric unit. This is similar to its chiral precursor, aquaoxo(N -salicylidene-L-alaninato) vanadium [(IV); Hämäläinen et al., 1985]. The preparation of the complex does not influence the stereochemistry at the chiral C 8 and $\mathrm{C} 8^{\prime}$ atoms. Although the two independent molecules appear to be related by a centre of inversion, as would occur if the space group were $P 2_{1} / n$, refinement in this centrosymmetric space group would not converge. Careful examination of the stereochemistry at the chiral C atoms shows that both chiral centres (C 8 and $\mathrm{C} 8^{\prime}$) have the

Fig. 1. ORTEPII (Johnson, 1976) plot for (1) drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii.

[^0]: © 1999 International Union of Crystallography
 Printed in Great Britain - all rights reserved

